- (19) C. G. Windsor, Proc. Phys. Soc., London, 91, 353 (1967); M. DeLeener and P. Resibois, Phys. Rev., 152, 318 (1966), and references therein.
- (20)C. Kittel and E. Abrahams, Phys. Rev., 90, 238 (1953)
- L. Shia and G. F. Kokoszka, J. Chem. Phys., 60, 1101 (1974) (22)
- (a) R. C. Hughes and Z. G. Soos, J. Chem. Phys., 48, 1066 (1968); (b) B. M. Hoffman and R. C. Hughes, *ibid.*, 52, 4011 (1970); (c) T. Z.
- Huang, R. P. Taylor, and Z. G. Soos, Phys. Rev. Lett., 28, 1054 (1972). (23) R. W. Jotham, Chem. Commun., 178 (1973).
- W. E. Hatfield, private communication.
   See for example: J. F. Boas, R. H. Dunhill, J. R. Pilbrow, R. C. Srivastava, and T. D. Smith, J. Chem. Soc. A, 94 (1969); P. Kottis and R. Lefebvre, J. Chem. Phys., 39, 393 (1963); C. P. Poole and H. A. Farach, "The Theory of Magnetic Resonance", Wiley-Interscience, New York, N.Y., 1972
- See for example B. J. Hathaway and D. E. Billing, Coord. Chem. Rev., (26)5, 143 (1970).

Contribution from the Department of Chemistry, University of Ottawa, Ottawa, Canada, K1N 6N5

# **Oxofluoro Complex Anion Equilibria in Aqueous Hydrofluoric** Acid. 3. Iodate(V) in Concentrated Hydrofluoric Acid (>26 M)

JOHN B. MILNE\* and DUNCAN M. MOFFETT

## Received January 7, 1976

AIC60005E

The vibrational spectra of the IOF<sub>4</sub><sup>-</sup> anion in CsIOF<sub>4</sub> and KIOF<sub>4</sub> and in solution in CH<sub>3</sub>CN have been determined and assigned. Solutions of various ratios of IF<sub>5</sub> and H<sub>2</sub>O in CH<sub>3</sub>CN and of HIO<sub>3</sub> in hydrofluoric acid (48-100%) have been studied by Raman and <sup>19</sup>F NMR spectroscopy. The spectra of the acetonitrile solutions with up to a nearly equimolar ratio of H<sub>2</sub>O to IF<sub>5</sub> are consistent with the presence of, in addition to the IOF<sub>4</sub><sup>-</sup> ion, HIOF<sub>4</sub> and IF<sub>5</sub>, while the spectra of the hydrofluoric acid solutions show the presence of  $IO_2F_2^-$  ion,  $HIO_2F_2$ ,  $HIOF_4$ , and  $IF_5$ .

### Introduction

Recently the results of two studies of the behavior of iodine(V) in hydrofluoric acid have been reported.<sup>1,2</sup> El-Gad and Selig<sup>1</sup> showed that IF<sub>5</sub> is formed when  $I_2O_5$  or NaIO<sub>3</sub> is dissolved in anhydrous HF. These authors found no evidence for the IF<sub>6</sub><sup>-</sup> ion or for other oxofluoro or hydroxofluoro species in their solutions. Milne and Moffett<sup>2</sup> studied solutions of HIO<sub>3</sub> in aqueous hydrofluoric acid (<26 M) and found evidence for the species HIO<sub>3</sub>, IO<sub>3</sub><sup>-</sup>, and IO<sub>2</sub>F<sub>2</sub><sup>-</sup>. They evaluated the constant governing the equilibrium between IO3<sup>-</sup> and  $IO_2F_2^-$ . The region of HF concentration between 48 and 100% has not been thoroughly studied and forms the subject of this paper. Of particular interest was the possible existence of the IOF<sub>4</sub><sup>-</sup> ion in these solutions. Compounds with this anion have been particularily elusive<sup>3</sup> although the x-ray crystal structure of CsIOF<sub>4</sub> has been reported<sup>4</sup> and the anion is a likely impurity in the preparations of hexafluoroiodate(V) compounds. $^{5,6}$ 

#### Experimental Section

Materials. Iodic acid, 99% (BDH), potassium iodate (BDH), potassium fluoride, 98% (BDH), and cesium fluoride, 99% (Ozark-Mahoning), were dried by heating under vacuum for 12 h before use; hydrofluoric acid, 48% (J. T. Baker), was standardized against standard NaOH using phenolphthalein indicator before use. Anhydrous grade HF (Matheson) was used directly. Iodine pentafluoride, 98% (Matheson), was purified by distillation from NaF to remove HF and then from Hg to remove  $I_2$ . The distillation was carried out under vacuum in an all-glass break-seal apparatus. Acetonitrile, anhydrous (Eastman), was purified by distillation from P<sub>2</sub>O<sub>5</sub>.

Cesium iodate was prepared by crystallization from an aqueous solution of Cs2CO3 and HIO3. Potassium difluoroiodate was prepared by the method of Helmholz and Rogers.<sup>7</sup> Three methods were tried for the preparation of the MIIOF<sub>4</sub> compounds: (1) from a stoichiometric mixture of  $M^{1}IO_{3}$ , MF ( $M^{1} = K$ , Cs), and IF<sub>5</sub> according to the reaction

 $M^{I}IO_{3} + 2M^{I}F + 2IF_{5} = 3M^{I}IOF_{4}$ 

(2) from a stoichiometric mixture of KIO<sub>2</sub>F<sub>2</sub>, KF, and IF<sub>5</sub> according to the reaction

 $KIO_2F_2 + KF + IF_5 = 2KIOF_4$ 

and (3) by hydrolysis of hexafluoroiodate in acetonitrile

 $M^{I}IF_{4} + H_{2}O = M^{I}IOF_{4} + 2HF$ 

Reactions were carried out in all-glass apparatus and transfers were done in a drybox. All of the methods produced MIIOF<sub>4</sub> as indicated by ir spectra of the products, which showed the characteristic IO stretching mode of the  $IOF_4^-$  ion at 890 cm<sup>-1</sup>,<sup>3,4</sup> but none of the products was completely free of  $M^{I}IO_{2}F_{2}$  impurity with moderately strong ir bands at 805–815 cm<sup>-1</sup>.<sup>2,8</sup> Both acetonitrile and IF<sub>5</sub> were used as solvents for methods 1 and 2, but where the latter was used as solvent, an ir spectrum of the product showed that M<sup>1</sup>IF<sub>6</sub>, with characteristic bands in the region  $605-655 \text{ cm}^{-1}$ ,<sup>5,9</sup> was present. Neither  $M^{I}IO_{2}F_{2}$  nor  $M^{I}IOF_{4}$  produces bands in this spectral region. Recrystallization from acetonitrile gave a product which was free of M<sup>I</sup>IF<sub>6</sub> but which consisted of M<sup>I</sup>IO<sub>2</sub>F<sub>2</sub> and M<sup>I</sup>IOF<sub>4</sub>.

Ryan and Asprey<sup>4</sup> obtained crystals of CsIOF<sub>4</sub> from a mixture of CsI and IF<sub>5</sub> in acetonitrile. The oxygen source was not identified and could be either the glass reaction container itself or water adsorbed on the surface of the glass. It is interesting that  $XeF_6$  reacts with Pyrex glass to give XeOF4<sup>10</sup> and a similar reaction may occur with the isoelectronic IF<sub>6</sub><sup>-</sup> ion:  $2IF_6^- + SiO_2 = 2IOF_4^- + SiF_4$ . To test this possibility a preparation of KIF<sub>6</sub> in CH<sub>3</sub>CN was carried out in the presence of finely ground glass, which had been dried under vacuum, but the ir spectrum of the product showed only the presence of KIF<sub>6</sub> and SiO<sub>2</sub> in the product.

A typical preparation had 2.94 g of KF (0.05 mol), 5.41 g of KIO<sub>3</sub> (0.025 mol) and  $11.15 \text{ g of IF}_5$  (0.05 mol). The mixture was shaken in 50 ml of dry acetonitrile for 24 h and then pumped dry under vacuum. The ir spectrum of the product could be accounted for by the presence of only KIO<sub>2</sub>F<sub>2</sub> and KIOF<sub>4</sub>. Anal. Calcd for KIOF<sub>4</sub>: I, 49.19. Calcd for KIOF<sub>4</sub> containing 8% KIO<sub>2</sub>F<sub>2</sub>: I, 49.65. Found: I, 49.65. All products were analyzed for fluoride by titration with  $La(NO_3)_3$ , using a fluoride-sensitive electrode. Reasonably sharp end points were observed but the results were shown subsequently to be 15-20% high.<sup>2</sup> Using a correction factor of 0.85 estimated from the analysis of  $M^{I}IO_{2}F_{2}$  compounds,<sup>2</sup> the fluoride content of the KIOF<sub>4</sub> product above was found to be 28% (calcd for KIOF<sub>4</sub>, 29.46%; calcd for KIOF<sub>4</sub> containing 8% KIO<sub>2</sub>F<sub>2</sub>, 28.40%).

Methods. Analysis. Iodine was determined as iodate by reduction with excess KI and titration of liberated iodine with thiosulfate. The fluoride analysis has been discussed elsewhere.<sup>2</sup>

Spectroscopy. Ir spectra were taken as mulls in Nujol with CsBr plates using a Beckman IR20A spectrometer. Band positions were accurate to  $\pm 5$  cm<sup>-1</sup>. Raman spectra were taken on a Jarrell-Ash 300 spectrometer. All spectra were taken at 25 °C. The 4880-Å line of a Spectra Physics argon ion laser was used to excite the spectra and detection was by a cooled photomultiplier tube. A spike filter

Table I. Raman and Ir Spectra of  $CsIOF_4$ - $CsIO_2F_2$  and  $KIOF_4$ - $KIO_2F_2$  Products and of  $KIO_2F_2^{a}$  (cm<sup>-1</sup>)

| CsIOF <sub>4</sub> -CsIO <sub>2</sub> F <sub>2</sub> |              | KIOF <sub>4</sub> -KIO <sub>2</sub> F <sub>2</sub> | KIO <sub>2</sub> F <sub>2</sub> |           | CsIOF <sub>4</sub> |            | KIOF       |  |
|------------------------------------------------------|--------------|----------------------------------------------------|---------------------------------|-----------|--------------------|------------|------------|--|
| Raman                                                | Ir           | Ir                                                 | Raman                           | Irb       | Raman              | Ir         | Ir         |  |
| 888 vs                                               | 885 m        | 882 vs                                             |                                 |           | 888 vs             | 885 m      | 882 vs     |  |
| 835 mw, sh                                           | 845 w        | 850 w                                              | 838 m                           | 851 m     |                    |            |            |  |
|                                                      |              | 845 w                                              |                                 | 845 m     |                    |            |            |  |
| 817 s                                                | 825 w        | 813 m                                              | 817 vs                          | 819 vs    |                    |            |            |  |
| 810 s. sh                                            |              | 805 w                                              | 814 m, sh                       | 805 w. sh |                    |            |            |  |
| 533 vs                                               | 535 m, sh    | 529 s, sh                                          | ,                               | ,         | 533 vs             | 535 m. sh  | 529 s. sh  |  |
| [485 s]                                              | [485 vs. br] | 487 s. sh                                          | 479 s                           | 485 s     | 485 s              | 485 vs. br | - /        |  |
| 475 m, sh                                            | L / 1        | 482 vs. br                                         |                                 |           | 475 m, sh          | - ,        | 482 vs. br |  |
| 461 w. sh                                            | 457 m. sh    | 441 w. sh                                          | 456 vw                          | 440 m     |                    |            |            |  |
|                                                      | 405 w        | 421 w. sh                                          |                                 | 407 m     |                    |            |            |  |
| 365 ms                                               | 369 s        | [361 m]                                            |                                 |           | 365 m              | 369 s      | 361 m      |  |
| 345 w                                                |              | []                                                 | 360 m                           | 360 s     |                    |            |            |  |
|                                                      |              |                                                    |                                 | 351 w. sh |                    |            |            |  |
| 332 w                                                | 343 w, sh    |                                                    | 346 w                           | 345 s     |                    |            |            |  |
| 303 m                                                | ,            |                                                    | 323 s                           |           |                    |            |            |  |
| 273 w                                                | 275 m        | 280 w                                              |                                 |           | 273 w              | 275 m      | 280 w      |  |
| 214 w                                                |              |                                                    |                                 | 220 m, sh | 214 w              |            |            |  |
|                                                      |              |                                                    | 194 vw                          | 197 s     |                    |            |            |  |
| 124 w, br                                            |              |                                                    |                                 |           |                    |            |            |  |
| [90 m]                                               |              |                                                    | 90 br, sh                       |           | 90 m               |            |            |  |
| 75 m <sup>°</sup>                                    |              |                                                    | 58 m                            |           | 75 m               |            |            |  |

<sup>a</sup> Brackets indicate that the band has contributions from  $IO_2F_2$  and  $IOF_4$ . <sup>b</sup> Reference 2.

**Table II.** Raman and Ir Spectra of  $XeOF_4$ ,  $IOF_4^-$ , and  $TeOF_4^{2-}$  (cm<sup>-1</sup>)

|                |                | XeOF <sub>4</sub> <sup>a</sup> |                 | IOF <sub>4</sub> -c |                     | TeOF <sub>4</sub> <sup>2-b</sup> |               | Approx descripp                                      |
|----------------|----------------|--------------------------------|-----------------|---------------------|---------------------|----------------------------------|---------------|------------------------------------------------------|
| Class          | uss Mode no.   | Raman                          | Ir              | Raman               | Ir                  | Raman                            | Ir            | of mode                                              |
| A,             | $\nu_1$        | 920 mw, p                      | 926 s           | 888 vs              | 885 m               | 837 vs                           | 840 s         | ν(XO)                                                |
| •              | $\nu_2$        | 567 s, p                       | 576 m           | 533 vs              | 535 m, sh           | 461 m                            | 480 m         | $v_{sym}(XF_4)$<br>in phase                          |
|                | $\nu_3$        | 285 w, p                       | 294 s           | 273 w               | 275 m               |                                  | 265 m         | $\delta_{sym}(XF_4)$<br>umbrella                     |
| $\mathbf{B}_1$ | $\nu_4$        | 527 m                          |                 | 475 m               |                     | 390 m                            |               | $v_{sym}(XF_4)$<br>out of phase                      |
|                | $\nu_{5}$      |                                |                 |                     |                     |                                  |               | δ <sub>asym</sub> (XF <sub>4</sub> )<br>out of plane |
| B <sub>2</sub> | $\nu_6$        | 233 mw                         |                 | 214 w               |                     | 190 w                            |               | δ <sub>sym</sub> (XF <sub>4</sub> )<br>in plane      |
| Ε              | $\nu_7$        | 365 mw                         | 608 vs<br>361 s | 485 m, sh<br>365 ms | 485 vs, br<br>369 s | 335 m                            | 330-60 vs, br | $v_{asym}(XF_4)$<br>$\delta(OF_4)$ wag               |
|                | ν <sub>9</sub> | 161 m                          |                 | 124 w, br           |                     | 129 w                            |               | $\delta_{asym}(XF_4)$<br>in plane                    |

<sup>a</sup> Reference 14. <sup>b</sup> Reference 15. <sup>c</sup> CsIOF<sub>4</sub>.

was used to remove plasma lines when recording the spectra of the solids. Solid samples were contained in 1-mm o.d. Pyrex tubes and the spectra of the solutions were taken using a cylindrical sapphire cell, 10 cm long  $\times$  5 mm i.d. (Tyco, Sapphikon Division) closed with a Kel-F needle valve which was attached by a Swagelock fitting. Slit widths were 5 cm<sup>-1</sup> for the spectra of the solids and 10 cm<sup>-1</sup> for the solutions. Solutions in aqueous hydrofluoric acid with HF greater than 48% were prepared on a Monel vacuum line equipped with Hoke valves, Kel-F traps (Argonne National Laboratory), and a Bourdon type pressure gauge (Helicord). Solutions were made up by weight and molarities were calculated using density data in ref 11.

<sup>19</sup>F NMR spectra were taken on a Varian Associates HA 100 spectrometer operated at 94.1 MHz in unlocked mode. The 2500-Hz sidebands did not interfere with the spectra taken. Shifts were referenced to external CFCl<sub>3</sub> and determined by sideband techniques. The temperature was regulated by a Varian temperature controller and was accurate to  $\pm 5$  °C. Samples were contained in Kel-F tubes which could be inserted into glass NMR tubes. The tubes were heat-sealed under vacuum.

## **Results and Discussion**

Solids. The Raman spectrum of a mixture of  $CsIO_2F_2$  and  $CsIOF_4$  is given in Figure 1 along with the Raman spectrum of  $KIO_2F_2$ . The positions of the bands in the Raman and ir spectra of the mixture and those of  $KIO_2F_2$  are given in Table I along with those for the ir spectrum of the mixture  $KIO_2F_2$ -KIOF<sub>4</sub> and the resultant bands attributed to  $CsIOF_4$ 

and KIOF<sub>4</sub>. The spectrum in Figure 1 shows that this product is free of both  $IO_3^-$  and  $IF_6^-$  ions by the absence of the strong Raman bands for these anions at 754 and 774 cm<sup>-1</sup> <sup>12</sup> and 628 cm<sup>-1,9</sup> respectively. The spectrum of the IOF<sub>4</sub><sup>-</sup> ion was obtained by subtraction of the bands due to  $IO_2F_2^-$  ion from the Raman spectrum shown in Figure 1 and the ir spectra. We were unable to prepare anhydrous  $CsIO_2F_2$  by standard methods<sup>2</sup> and the bands arising from the  $IO_2F_2^-$  ion in Figure 1 show little resemblance to those in the spectrum of  $CsIO_2F_2 \cdot \frac{1}{3}H_2O^2$  but there is a close similarity with the spectrum of KIO<sub>2</sub>F<sub>2</sub>. For this reason the Raman spectrum of  $KIO_2F_2$  was used to subtract  $IO_2F_2^-$  bands from the spectrum of the mixture and give the resultant IOF<sub>4</sub><sup>-</sup> spectrum given in Table I. The  $Cs^+$  cation is larger than the  $K^+$  cation and therefore it is expected that the vibrational modes of the  $IO_2F_2^-$  ion will occur at slightly lower frequencies in  $CsIO_2F_2$ than in  $KIO_2F_2$  due to expansion of the lattice.<sup>13</sup> This and the relative intensities of the bands have been taken into consideration in the establishment of the vibrational spectrum of the  $IOF_4^-$  ion.

The assignment of the spectrum of CsIOF<sub>4</sub> is given in Table II along with the spectrum of isoelectronic XeOF<sub>4</sub><sup>14</sup> and the TeOF<sub>4</sub><sup>2-</sup> ion.<sup>15</sup> The IOF<sub>4</sub><sup>-</sup> ion is expected to have a square-pyramidal shape with the oxygen on the fourfold axis ( $C_{4\nu}$  symmetry). Of the expected nine normal modes (3 A<sub>1</sub>



Figure 1. Raman spectrum of the solid  $CsIOF_4$ - $CsIO_2F_2$  mixture (A) and  $KIO_2F_2$  (B). The frequencies for the  $CsIOF_4$  bands are given in spectrum A.

**Table III.** Raman Spectra of  $IF_{s}(cm^{-1})$ 

| <br>Vapor (20 °C) <sup>a</sup> | HF soln <sup>b</sup> | CH <sub>3</sub> CN soln | Mode                      |  |
|--------------------------------|----------------------|-------------------------|---------------------------|--|
| <br>710 s, p                   | 697 s, p             | 678 s, p                | $\nu_1(A_1)$              |  |
| 631 sh                         |                      |                         | $\nu_{\tau}(E)$           |  |
| 614 vs, p                      | 599 s, p             | 588 s, p                | $\nu_2(A_1)$              |  |
| 602 sh                         | 583 m                | 568 sh                  | $\nu_{A}(\mathbf{B}_{1})$ |  |
| 370 w                          | 377 w                | 377 <sup>c</sup>        | $\nu_8(E)$                |  |
| 318 m, p                       | 321 w, p             | 319 m, p                | $\nu_3(A_1)$              |  |
| 274 w                          | 273 w                |                         | $\nu_6(B_2)$              |  |
| ~200 w                         | 191 vw               |                         | $\nu_{9}(E)$              |  |
|                                |                      |                         | •                         |  |

<sup>a</sup> Reference 20. <sup>b</sup> Reference 1. <sup>c</sup> Band obscured by solvent.

+ 2 B<sub>1</sub> + B<sub>2</sub> + 3 E) all are accounted for except  $\nu_5$ , which is seldom observed in the spectra of related species with  $C_{4\nu}$ symmetry.<sup>15,16</sup> The normal modes of the IOF<sub>4</sub><sup>-</sup> ion lie between those of XeOF<sub>4</sub> and TeOF<sub>4</sub><sup>2-</sup> in frequency. In the spectra of XeOF<sub>4</sub>  $\nu_7$ , the antisymmetric XF<sub>4</sub> stretching mode, lies above  $\nu_4$ , the symmetric out-of-phase stretching mode, while for TeOF<sub>4</sub><sup>2-</sup> the order is reversed. In the spectra of IOF<sub>4</sub><sup>-</sup> the two modes virtually coincide. A similar crossing over of  $\nu_4$ and  $\nu_7$  arises in the series IF<sub>5</sub>, TeF<sub>5</sub><sup>-</sup>, and SbF<sub>5</sub><sup>2-,15</sup>

Solutions in Acetonitrile. Solutions of various mixtures of IF<sub>5</sub> and H<sub>2</sub>O in CH<sub>3</sub>CN were studied in order to assist in the identification of the species present in the aqueous HF solutions. Acetonitrile has been used as solvent for the study of the Raman spectrum of the IF<sub>6</sub><sup>-</sup> ion,<sup>18</sup> for preparations involving IF5<sup>3,19</sup> and CsIOF4.<sup>4</sup> The spectra of IF5 and various IF<sub>5</sub>-H<sub>2</sub>O mixtures dissolved in CH<sub>3</sub>CN are shown in Figure 2. The bands observed for  $IF_5$  are given along with those for IF<sub>5</sub> in HF<sup>1</sup> and gaseous IF<sub>5</sub><sup>20</sup> in Table III, and the bands for the hydrolysis products along with those for isoelectronic Te(IV) species are given in Table IV. Acetonitrile itself has Raman bands at 379 and 919 cm<sup>-1 21</sup> and these are obvious in the figure. Four normal modes of IF5 are clearly observed in the Raman spectrum, trace A, with one band obscured by the solvent peak at 379 cm<sup>-1</sup>. The three I-F stretching modes observed,  $\nu_1$ ,  $\nu_2$ , and  $\nu_4$ , are all shifted to significantly lower frequencies relative to those of IF<sub>5</sub> vapor, indicating that an adduct may be formed in solution similar to the solid adducts formed by IF<sub>5</sub> with donors such as  $pyridine^{22}$  and the



Figure 2. Raman spectra of  $IF_5$ -H<sub>2</sub>O mixtures in CH<sub>3</sub>CN: trace A, 1.50 M IF<sub>5</sub>; trace B, 1.66 M IF<sub>5</sub> and 0.8 M H<sub>2</sub>O; trace C, 1.66 M IF<sub>5</sub> and 1.20 M H<sub>2</sub>O.

BrF<sub>5</sub>·CH<sub>3</sub>CN adduct.<sup>23</sup> Figure 2 shows that as H<sub>2</sub>O is added to the solution, four new bands arise at 735, 624, 534, and 306 cm<sup>-1</sup> and the bands at 678 and 319 cm<sup>-1</sup> due to IF<sub>5</sub> decrease in relative intensity while the IF<sub>5</sub> band at 587 cm<sup>-1</sup> appears to increase in intensity but shifts 10 cm<sup>-1</sup> to lower wavenumber. Furthermore, the CH<sub>3</sub>CN bands at 379 and 919 cm<sup>-1</sup> increase in strength, indicating that the new species formed in solution also have bands at these frequencies. The new bands are best accounted for in terms of the reactions

$$IF_{5} + H_{2}O = HIOF_{4} + HF$$
  
$$H_{2}O + HIOF_{4} = H_{3}O^{+} + IOF_{4}^{-}$$
  
$$CH_{3}CN$$

The presence of the IOF<sub>4</sub><sup>-</sup> ion is shown by the characteristic IO stretching mode,  $\nu_1$ , at 910 cm<sup>-1</sup>, lying under the solvent peak at 919 cm<sup>-1</sup> and the IF<sub>4</sub> symmetric in-phase stretching mode,  $\nu_2$ , at 534 cm<sup>-1</sup>. The growth of the solvent peak at 379 cm<sup>-1</sup> is due in part to the underlying  $\nu_8$  of IOF<sub>4</sub><sup>-</sup> at 365 cm<sup>-1</sup>. The characteristically strong Raman bands for  $IO_2F_2^-$  (840 and 483 cm<sup>-1 2</sup>) and IOF<sub>3</sub> (883, 657, and 550 cm<sup>-1 24</sup>) are not observed in the spectra. Thus, the three remaining new bands at 735, 624, and 306 cm<sup>-1</sup> are attributed to the HIOF<sub>4</sub> molecule and may be assigned to  $\nu_1$ ,  $\nu_2$ , and  $\nu_3$ , respectively, in  $C_{4v}$  symmetry (OH group considered as one atom). The increase in intensity of the IF<sub>5</sub> peak at 582 cm<sup>-1</sup>, relative to that at 682 cm<sup>-1</sup>, and its shift to lower wavenumber as the  $H_2O$ concentration is increased indicate that a new band due to one of the hydrolysis products lies under this  $IF_5$  peak. The  $IOF_4^$ ion has no band here but the symmetric out-of-phase IF4 stretch,  $\nu_4$ , of HIOF<sub>4</sub> is expected to lie close to  $\nu_4$  of IF<sub>5</sub>, judging from the close proximity of the two  $\nu_4$  bands in the

| 00 1     | <b>D O O O O O O O O O O</b> |                           |                                    | 11 = (11) = (11)               |
|----------|------------------------------|---------------------------|------------------------------------|--------------------------------|
|          | Domon Spectro of I/V         | Shoolog Cound in L (L. L. | Nollitione in Acotonitrile and Com | narahia Tali VI Snaciacy Icm-+ |
| таплету. |                              |                           |                                    |                                |
|          |                              |                           |                                    |                                |

|                      |                      | - •                       |                                |                                    |                       |                |
|----------------------|----------------------|---------------------------|--------------------------------|------------------------------------|-----------------------|----------------|
| <br>IF,              | HIOF₄                | IOF4                      | TeF <sub>5</sub> <sup>-a</sup> | Te(OH)F <sub>4</sub> <sup>-a</sup> | $\text{TeOF}_4^{2-a}$ | Mode           |
| <br>678 s, p         | 735 m, p             | 910 <sup>b</sup> br, s, p | 611 vs                         | 697 vs                             | 837 vs                | ν <sub>1</sub> |
| 582 vs, p            | 624 vs, p            | 534 vs, p                 | 504 s                          | 502 vs                             | 461 m                 | $\nu_2$        |
| 318 w, p             | 306 w, p             |                           | 282 mw                         | 266 w                              |                       | $\nu_3$        |
| 568 sh               | ~570 m               |                           | 472 s                          | 465 m                              | 390 m                 | va             |
| [379 s] <sup>b</sup> | [379 s] <sup>b</sup> | [379 s] <sup>b</sup>      | 338 mw                         | 378 w                              |                       | $\nu_{s}$      |
|                      |                      |                           |                                | 342 w                              |                       | Ť              |

<sup>a</sup> Reference 16. <sup>b</sup> Obscured by solvent bands.



Figure 3. Raman spectra of 3 M HIO<sub>3</sub> solutions in hydrofluoric acid: trace A, 48% HF; trace B, 65% HF; trace C, 78% HF. Wavenumber assignments are given to the  $HIO_2F_2$  peaks. Asterisk indicates sapphire peak.

isoelectronic pair Te(OH)F<sub>4</sub><sup>-</sup> and TeF<sub>5</sub><sup>-</sup> (Table IV). The spectra of all species and their assignments are given in Table IV. The bands for HIOF<sub>4</sub> have been assigned in  $C_{4\nu}$  symmetry. Except for the shoulder at 568 cm<sup>-1</sup> due to  $\nu_4$  of IF<sub>5</sub> and  $\nu_4$  of HIOF<sub>4</sub> at 570 cm<sup>-1</sup>, all of the bands observed are polarized in agreement with the proposed assignment, and the relationship between the spectra of the three species is similar to that between the spectra of the isoelectronic series, TeF<sub>5</sub><sup>-</sup>, Te(OH)F<sub>4</sub><sup>-</sup>, and TeOF<sub>4</sub><sup>2-</sup>,<sup>15</sup> as shown in Table IV. An exception is  $\nu_2$  which is virtually the same in KTeF<sub>5</sub> and KTe(OH)F<sub>4</sub> but which lies some 40 cm<sup>-1</sup> lower in IF<sub>5</sub> compared to its position in HIOF<sub>4</sub>. The relatively low value for IF<sub>5</sub> in CH<sub>3</sub>CN is no doubt due to complex formation.

The <sup>19</sup>F NMR spectrum of a 5.24 M IF<sub>5</sub> solution in CH<sub>3</sub>CN which was 2.37 M in H<sub>2</sub>O showed, upon cooling to 10 °C, the typical doublet and quintet pattern of IF<sub>5</sub><sup>25</sup> ( $\delta_{CFCl_3}$  -4.9 ppm (doublet), -47.3 ppm (quintet),  $J_{FF'}$  = 80 Hz) in addition to a broad resonance at  $\delta_{CFCl_3}$  +40.2 ppm which may be assigned to HF, HIOF<sub>4</sub>, and IOF<sub>4</sub><sup>-</sup> undergoing rapid exchange on the NMR time scale. Cooling to -45 °C, at which point the solution froze, failed to stop this exchange. It is interesting that the exchange does not take place via IF<sub>5</sub> and rapid proton exchange cannot account for the single exchanging peak observed. Exchange may be occurring via IOF<sub>3</sub>

$$HF + IOF_{4} \xrightarrow{\leftarrow} CH_{3}CN IOF_{3} + HF_{2}$$
$$HIOF_{4} \xrightarrow{\leftarrow} IOF_{3} + HF$$
$$CH_{3}CN OF_{3} + HF$$

Integration showed a ratio of exchanging peak area to total area of IF<sub>5</sub> peaks of 0.72. Using the stoichiometry of the mixture and assuming complete reaction to give HIOF<sub>4</sub> and  $IOF_4^-$ , a theoretical ratio of 0.83 is calculated. The low observed ratio shows that not all of the water causes hydrolysis of IF<sub>5</sub> but some is protonated by the acid HIOF<sub>4</sub>.

Solutions in Aqueous HF. Solutions of HIO<sub>3</sub> in 0–48% HF have been shown to contain varying amounts of HIO<sub>3</sub>, IO<sub>3</sub><sup>-</sup>, and IO<sub>2</sub>F<sub>2</sub><sup>-2</sup>.<sup>2</sup> A solution of 3.0 M HIO<sub>3</sub> in 48% HF gives only the spectrum of the IO<sub>2</sub>F<sub>2</sub><sup>-</sup> ion but in 65 and 78% HF bands due to a new species are found as shown in Figure 3. Both the symmetric IO<sub>2</sub> stretching band at 840 cm<sup>-1</sup> and the IF<sub>2</sub>

Table V. Raman Spectrum of the HIO<sub>2</sub>F<sub>2</sub> Molecule

| Freq, cm <sup>-1</sup>               | Approx<br>descripn<br>of mode                                              | Freq, cm <sup>-1</sup>     | Approx<br>descripn<br>of mode        |
|--------------------------------------|----------------------------------------------------------------------------|----------------------------|--------------------------------------|
| 700 m, p<br>850 s, br, p<br>540 s, p | <sup>ν</sup> I-OH<br><sup>ν</sup> IO<br><sup>ν</sup> IF <sub>2</sub> , sym | 210 w, p(?)<br>330 m, p(?) | δ <sub>IF2</sub> ,sym<br>δI(OH)O,sym |



Figure 4. Raman spectra of  $3 \text{ M HIO}_3$  solutions in hydrofluoric acid: trace A, 90% HF; trace B, 100% HF.

stretching band at 483 cm<sup>-1</sup> of  $IO_2F_2^-$  shift to higher frequency and a new band appears at 700 cm<sup>-1</sup>. These changes cannot be accounted for by any of the species identified in the acetonitrile solutions but are consistent with the formation of  $HIO_2F_2$  in the more strongly acidic HF solutions

 $2HF + IO_2F_2 \rightleftharpoons HIO_2F_2 + HF_2$ 

This protonation is consistent with the steep fall in the Hammett acidity function,  $H_0$ , of 4 units from 48 to 65% HF.<sup>26</sup> The modes  $\nu_{I-OH}$ ,  $\nu_{IO}$ , and  $\nu_{IF_2,sym}$  in the Raman spectrum of  $HIO_2F_2$  are expected to be strong. The band observed at 700  $cm^{-1}$  lies in the range of I–OH stretching modes ( $\nu_4$ (HIO<sub>3</sub>) 644 cm<sup>-1</sup>;<sup>2</sup>  $\nu_1$ (HIOF<sub>4</sub>) 735 cm<sup>-1</sup>). The frequency lies between those for HIO<sub>3</sub> and HIOF<sub>4</sub> as expected on electronegativity grounds. The symmetric IF<sub>2</sub> stretching mode for  $HIO_2F_2$  is expected to lie at higher frequencies than that for the  $IO_2F_2^$ ion because of the change in ion charge. A comparable change is observed in the spectra of  $TeOF_4^{\overline{2}-}$  and  $Te(OH)F_4^{-}$  where  $\nu_2$ , the symmetric TeF<sub>4</sub> stretch, increases by 40 cm<sup>-1</sup> upon protonation (Table IV). For the same reason  $v_{IO}$  is expected to lie at higher frequencies than the symmetric IO<sub>2</sub> stretch,  $\nu_1$ , in the spectrum of IO<sub>2</sub>F<sub>2</sub><sup>-,2</sup> In a comparable example, a shift of  $+20 \text{ cm}^{-1}$  is observed on going from the HSeO<sub>3</sub><sup>-</sup> ion to H<sub>2</sub>SeO<sub>3</sub>.<sup>27</sup> In Figure 3, trace C, the relatively sharp  $\nu_1$  mode of the  $IO_2F_2^-$  ion at ~820 cm<sup>-1</sup> can still be observed sitting on top of the IO stretch of  $HIO_2F_2$ . Thus, the Raman spectrum of HIO<sub>2</sub>F<sub>2</sub> cannot be completely determined from the traces in Figure 3 due to overlap with  $IO_2F_2^-$  bands, but the three modes which can be assigned with reasonable certainty and their approximate description are given in Table V. If the OH group is assumed to be freely rotating or if the hydrogen lies in the plane of the IO<sub>2</sub> group, then the molecule has  $C_s$  symmetry and all of the modes observed have A' symmetry.

As the HF concentration is increased, new species are formed and further changes occur in the spectrum. The Raman spectra of 3.0 M HIO<sub>3</sub> solutions in 90 and 100% HF are shown in Figure 4. In the spectrum of the solution in 90% HF (trace A in Figure 4) the bands due to the  $IO_2F_2^-$  ion have virtually disappeared with the slight asymmetry of the peak at 855 cm<sup>-1</sup> caused by  $\nu_1$  of  $IO_2F_2^-$  (820 cm<sup>-1</sup>) being the only remaining evidence for this ion. The spectrum shows, in addition to bands due to  $HIO_2F_2$ , (1) a second I-OH stretch at 741 cm<sup>-1</sup>, (2) a sharp peak sitting on top of the I-OH stretch of  $HIO_2F_2$  at 700 cm<sup>-1</sup>, (3) a considerably enhanced shoulder on the high-wavenumber side of the symmetric IF<sub>2</sub> stretch of  $HIO_2F_2$  at 540 cm<sup>-1</sup>, which appears to be made up of a peak at  $571 \text{ cm}^{-1}$  and a strong shoulder centered near 600 cm<sup>-1</sup>, and finally (4) a new peak at 370 cm<sup>-1</sup>. The spectrum observed is best interpreted in terms of a mixture of HIO<sub>2</sub>F<sub>2</sub>, HIOF4, and IF5. The presence of HIO<sub>2</sub>F<sub>2</sub> is indicated by the strong band at  $855 \text{ cm}^{-1}$ , the strong shift in the  $500-600\text{-cm}^{-1}$ region, the broad shift underlying the sharp peak at 697  $cm^{-1}$ . and the peak at 333 cm<sup>-1</sup>. The evidence for the presence of HIOF<sub>4</sub> consists of the I–OH stretching mode at 741 cm<sup>-1</sup> ( $\nu_1$ , 735  $cm^{-1}$  in acetonitrile, Table IV), the relatively strong shoulder at 610 cm<sup>-1</sup>, which is also in part due to  $\nu_2$  of IF<sub>5</sub>, the peak at 571 cm<sup>-1</sup> ( $\nu_4$ , 570 cm<sup>-1</sup> in acetonitrile), and the small peak at 370 cm<sup>-1</sup> ( $\nu_8$ , 379 cm<sup>-1</sup> in acetonitrile). The presence of IF<sub>5</sub> is shown by the sharp peak at 697  $cm^{-1}$  and the shoulder at 600 cm<sup>-1</sup>. These peaks arise from  $v_1$  and  $v_2$ of IF5, which are reported by El-Gad and Selig to come at 697 and 599 cm<sup>-1</sup> in HF solution.<sup>1</sup>

In the spectrum of the solution of 3 M HIO<sub>3</sub> in 100% HF (trace B, Figure 4), the bands due to  $IF_5$  at 697, 600, 380, 322, and 273  $cm^{-1}$  are much more obvious. The positions of these bands agree well with those reported for IF<sub>5</sub> in HF but are shifted to slightly higher wavenumber from those for IF5 in CH<sub>3</sub>CN (Table IV). The peaks due to HIO<sub>2</sub>F<sub>2</sub> (855, 540, and 333 cm<sup>-1</sup>) and HIOF<sub>4</sub> (741, 610, 571, and 370 cm<sup>-1</sup>) are still present. In the absence of interfering species,  $v_1$  and  $v_2$ of  $IF_5$  are of nearly equal strength (Figure 2, trace A; ref 1) but in trace A of Figure 4 the band at 600  $cm^{-1}$  is much stronger than that at  $697 \text{ cm}^{-1}$ . Moreover, the peak at 600cm<sup>-1</sup> has a shoulder on the high-frequency side. This is evidence for the presence of the symmetric in-phase IF stretching mode,  $\nu_2$ , of HIOF<sub>4</sub> in this region of the spectrum. The spectrum taken with incident light polarized parallel to the viewing direction shows bands at 577, 555, and  $\sim$  375 cm<sup>-1</sup>. These bands arise principally from the depolarized modes,  $v_4$ and  $\nu_8$ , of IF<sub>5</sub> and HIOF<sub>4</sub>.

El-Gad and Selig<sup>1</sup> found that only IF<sub>5</sub> was observed in HF solutions when a ratio of HF to I(V) (as  $I_2O_5$ ) of 15:1 was reached. In our solutions  $HIO_2F_2$  and  $HIOF_4$  were still observed at a ratio of 17:1. However, our I(V) solute, HIO<sub>3</sub>, produces 20% more H<sub>2</sub>O than does I<sub>2</sub>O<sub>5</sub> upon reaction with HF, and this accounts for the difference between the two solutions

 $I_2O_5 + 2OHF \rightleftharpoons 2IF_5 + 5H_3O^+ + 5HF_2^-$ 

 $2\text{HIO}_3 + 22\text{HF} \rightleftharpoons 2\text{IF}_5 + 6\text{H}_3\text{O}^* + 6\text{HF}_2^-$ 

It is surprising that El-Gad and Selig did not observe any of the oxofluoroiodate(V) species in their study of the solutes  $I_2O_5$ and NaIO<sub>3</sub>.<sup>1</sup>

The <sup>19</sup>F NMR spectrum of a 2.2 M HIO<sub>3</sub> solution in 26 M aqueous HF (45%) at 25 °C gives a single broad shift arising from exchange of all species. Upon cooling to -58 °C, a second shift appeared at  $\delta_{CFCl_3}$  –0.7 ppm while the solvent shift was found at  $\delta_{CFCl_3}$  +152 ppm. On the basis of the Raman evidence this new peak must arise from the  $IO_2F_2^$ ion. Integration of the spectra gave the intensity ratio for I(V)

species to solvent of 1:4.91. Calculation based upon stoichiometry gives, assuming  $IO_2F_2^-$  to be the I(V) species, a theoretical intensity ratio of 1:4.95. Solutions of HIO<sub>3</sub> in 71 and 83% aqueous HF gave a single broad exchanging peak down to the freezing point of the solutions at -20 °C. A 6.4 M HIO<sub>3</sub> solution in 100% HF gave, upon cooling to -60 °C, the typical doublet-quintet pattern of IF<sub>5</sub> ( $\delta_{CFCl_3}$  -3.1 ppm (doublet), -52.9 ppm (quintet),  $J_{FF'} = 78$  Hz) in addition to the HF solvent shift at  $\delta_{CFCl_3}$  94.8 ppm. The NMR parameters are close to those observed by El-Gad and Selig<sup>1</sup> for a solution of  $I_2O_5$  in 100% HF but these authors were able to observe their spectrum at 25 °C. Their solution was made up in a large excess of 100% HF and contained IF<sub>5</sub> as the only I(V) species present, according to their Raman spectrum. Exchange in our solutions is apparently occurring via HIOF<sub>4</sub> and/or  $HIO_2F_2$  rather than via  $IF_6^-$  ion inasmuch as the solutions studied in both laboratories contained comparable amounts of HF<sub>2</sub><sup>-</sup> ion and exchange via IF<sub>6</sub><sup>-</sup> ion would be equally favorable at room temperature.

Upon cooling of this 6.4 M HIO<sub>3</sub> solution to -70 °C an additional shift at  $\delta_{CFCI_3}$  0.3 ppm was observed. Whether this peak is due to  $HIO_2F_2$ ,  $HIOF_4$ , or both is not certain and further studies will be needed to clarify this point.

Acknowledgment. The authors thank Dr. A. R. Davis for the use of the Raman spectrometer at the Inland Waters Branch of Environment Canada and the National Research Council for financial assistance.

Registry No. KIO<sub>2</sub>F<sub>2</sub>, 16087-90-4; CsIOF<sub>4</sub>, 36374-06-8; KIOF<sub>4</sub>, 59654-71-6; IF<sub>5</sub>, 7783-66-6; HIOF<sub>4</sub>, 59654-72-7; HIO<sub>2</sub>F<sub>2</sub>, 59654-73-8.

#### References and Notes

- H. Selig and U. El-Gad, J. Inorg. Nucl. Chem., 35, 3517 (1973).
   J. B. Milne and D. Moffett, Inorg. Chem., 14, 1077 (1975).
   H. Klamm and H. Meinert, Z. Chem., 10, 227 (1970).

- (4)R. R. Ryan and L. B. Asprey, Acta Crystallogr., Sect. B, 28, 979 (1972).
- H. Klamm, H. Meinert, P. Reich, and K. Witke, Z. Chem., 8, 393 (1968).
   S. P. Beaton, D. W. A. Sharp, A. J. Perkins, I. Shett, H. H. Hyman,
- and K. O. Christe, *Inorg. Chem.*, 7, 2174 (1968). L. Helmholz and M. T. Rogers, J. Am. Chem. Soc., 62, 1537 (1940).
- A. Finch, P. N. Gates, and M. A. Jenkinson, J. Fluorine Chem., 2, 111 (8)(1972)
- (9) K. O. Christe, Inorg. Chem., 11, 1215 (1972).
  (10) J. G. Malm, I. Sheft, and C. L. Chernick, J. Am. Chem. Soc., 85, 110 1963).
- "International Critical Tables", Vol. III, McGraw-Hill, New York, N.Y., (11)1928, p 54.
- (12) J. R. Durig, O. D. Bonner, and W. H. Breazeale, J. Phys. Chem., 69, 3886 (1965).
- (13) A. Ruoff, J. B. Milne, G. Kaufmann, and M. LeRoy, Z. Anorg. Allg. Chem., 372, 119 (1970).
- (14) G. M. Begun, W. H. Fletcher, and D. F. Smith, J. Chem. Phys., 42, 236 (1965).

  - (15) J. B. Milne and D. Moffett, *Inorg. Chem.*, 12, 2240 (1973).
    (16) J. B. Milne and D. Moffett, *Inorg. Chem.*, 13, 2750 (1974).
    (17) K. O. Christe, E. C. Curtis, C. J. Schack, and D. Pilipovich, *Inorg. Chem.*, 11, 1679 (1972)

  - (18) H. Meinert and H. Klamm, Z. Chem., 8, 195 (1968).
    (19) H. Klamm, H. Meinert, P. Reich, and K. Witke, Z. Chem., 8, 468 (1968).
  - (20) L. E. Alexander and I. R. Beattie, J. Chem. Soc. A, 3091 (1971).
     (21) J. C. Evans and H. J. Bernstein, Can. J. Chem., 33, 1746 (1955).

  - (22) H. Klamm and H. Meinert, Z. Chem., 10, 270 (1970).
    (23) H. Meinert and U. Gross, Z. Chem., 9, 190 (1969).

  - (24)
  - H. A. Carter and F. Aubke, *Inorg. Chem.*, 10, 2296 (1971). N. Bartlett, S. Beaton, L. W. Reeves, and E. J. Wells, *Can. J. Chem.*, (25)42, 2531 (1964)
  - (26) H. H. Hyman, M. Kilpatrick, and J. J. Katz, J. Am. Chem. Soc., 79, 3668 (1957).
  - (27) G. E. Walrafen, J. Chem. Phys., 36, 90 (1961).